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An Ising chain is considered with a potential of the form J(i,j)/li-jlL where 
the J(i, j) are independent random variables with mean zero. The chain contains 
both randomness and frustration, and serves to model a spin glass. A simple 
argument is provided to show that the system does not exhibit a phase trans- 
ition at a positive temperature if ~> 1. This is to be contrasted with a 
ferromagnetic interaction which requires c~ > 2. The basic idea is to prove that 
the "surface" free energy between two half-lines is finite, although the "surface" 
energy may be unbounded. For d-dimensional systems, it is shown that the free 
energy does not depend on the specific boundary conditions if ~ > (1/2)d. 

KEY WORDS: Phase transition; random interactions; long-range interac- 
tions; one-dimensional; relative entropy; free energy. 

1. I N T R O D U C T I O N  

O n e - d i m e n s i o n a l  I s ing  spin  sys tems m a y  exhib i t  a phase  t r a n s i t i o n  if the 

range  of the i n t e r a c t i o n  b e t ween  the  spins  is l ong  enough .  T o  be specific, let 

us suppose  tha t  the  sp ins  in te rac t  via  a p o t e n t i a l  of  the form J(i, j ) / l i - j l  ~. 
If all the J(i, j )  are e q u a l  a n d  fe r romagne t i c ,  we have  a phase  t r a n s i t i o n  (1) if 
1 < ~ ~ 2, n o  phase  t r a n s i t i o n  (a~ for c~ > 2, a n d  the free energy  does  n o t  exist 
for ~ <  1. 

Suppose  n o w  tha t  the J(i, j )  are  i n d e p e n d e n t  r a n d o m  variables .  If the i r  

m e a n  is n o n z e r o ,  one  m u s t  requ i re  tha t  e > 1, as before, so as to o b t a i n  a 
f inite free ene rgy  per  site. However ,  in  the  t heo ry  of  sp in  glasses one  usua l ly  
a s sumes  tha t  the m e a n  of the  J(i, j )  vanishes .  In  t ha t  case, the  r a n d o m  
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variables J(i, j )  effectively reduce 2 the range of the interaction and e only 
has to exceed 1/2. That  is, the minimal value of c~ above which ther- 
modynamics exists and is nonrandom is reduced by a factor 1/2. This 
suggests that, instead of ~ > 2, now c~ > 1 suffices to make the equilibrium 
(Gibbs) state of an Ising chain unique and, hence, to exclude a phase trans- 
ition. We will prove that this intuitive argument is indeed correct. More 
precisely, it will be shown that # ~ ( S ( i ) ) =  0 whatever the temperature/3 and 
the equilibrium (Gibbs) state #~, provided e > 1. Physically this means that 
the spin-flip symmetry is not broken and that the Edwards-Anderson order 
parameter  vanishes. Partial results have been obtained by Khanin, (5~ who 
proved the uniqueness of the Gibbs state for c~ > 3/2. Recently, Kotliar et 
al. (6) predicted a phase transition for 1/2 < e < 1 and the absence of a phase 
transition for c~ > 1. 

In Section 2 we spell out some useful definitions and summarize the 
main arguments to prove that the free energy per spin f(/~) exists and is 
nonrandom. We also show that f(/~) does not depend on the specific boun- 
dary conditions. These results hold in any dimension d. Then, in Section 3, 
we specialize to d =  1, exploit the topology of the real line, and present a 
simple argument showing that the spin-flip symmetry is not broken for 
c~ > 1. Physically, the idea is to prove that the "surface" free energy between 
left and right-lines is almost surely finite, in spite of the fact that the surface 
energy may be unbounded. This idea is implemented by some methods 
derived from a previous paper, (4) to be referred to as I, and the notion of 
relative entropy, 3 which is explained in Appendix A. A discussion of our 
results may be found in Section 4. 

2. T H E  FREE E N E R G Y  

For  the moment  we consider a 
Hamil tonian 

random pair interaction with 

1 
HA({J})=~,~.  �9 A J ( i , j )  l i - j [  ~d s ( i )  S ( j )  (2.1) 

where A is a finite domain in 2 ~. Boundary conditions have not been 
included yet. The J ( i , j )  are independent random variables whose dis- 
tribution only depends on ( i - j )  and satisfies a uniformity condition which 
allows for a convergent cumulant expansion; cf. I Eq. (2.6). Throughout  

2 See Refs. 3 and 4. In Ref. 4 two annoying little misprints have escaped our attention. The 
two lower bounds for the summation in Eq. (2.16) are n = 2 and not 1 and In 2, respectively. 

3 See Refs. 7 and 8. The use of a relative entropy to prove the absence of phase transitions was 
initiated i'n a more abstract, C*-algebraic, setting by H. Araki, Ref. 7b. 
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this section we use ( )  to denote averaging with respect to the random 
configuration {J}. 

For a particular configuration {J} of the random variables the 
corresponding free energy per site in the thermodynamic limit is given by 

f ( { J } )  = A--o~lim ~AIF(A; {J})=  -kT)imoo~AllnZA({J})~ (2.2) 

where I AI is the number of sites in A, 

ZA({J}) = Tr exp -/~HA({J}) (2.3) 

is the partition function for the Hamiltonian HA({J}), and/3 = 1/kT is the 
inverse temperature, which we put equal to 1 throughout what follows. For 
Ising spins IS( i )=  _+1] the trace is a sum over all 2 IAt spin configurations. 

As to the existence of the limit in (2.2) we note that for ~ > 1 the limit 
exists in the sense of van Hove with probability one, is nonrandom and 
independent of the boundary conditions. (9~ For e > 1/2, the limit in (2.2) 
exists in the sense of Fisher with probability one and, again, is nonrandom. 
We now have to require that the mean of the J(i, j) vanish. The first proof 
of this result has been given by Khanin and Sinai, (3) who invoked the 
theory of large deviations. Their paper only covers the case of Ising spins 
with free boundary conditions. At the end the authors remark that more 
general boundary conditions and more general, classical, spins could be 
handled in a similar way. In I (Section 2) we presented a different argument 
based on a subadditive ergodic theorem (1~ and the observation that the 
free energy F(A; {J}) is subadditive in A, 

F A s <~ ~ F(Ai), Aic~Aj= ~ if i # j  (2.4} 
i 1 i = l  

since the Hamiltonian (2.1) is quadratic in the spin operators. Our 
approach applies to arbitrary n - c o m p o n e n t  classical and quantum 
models. However, we also assumed free boundary conditions, as in (2.1). 

In this section we want to give an explicit proof that, for classical spin 
systems, the limit in (2.2) does not depend on the specific boundary con- 
ditions. For the sake of simplicity we assume Ising spins and take random 
variables J(i, j) with variance one. 

In taking the thermodynamic limit we fix a sequence A n --* Go and 
specify a set of boundary conditions o-= {an}, i.e., given A,, we specify 
S(j)=a(j) f o r j ~ A , .  We then may write (An=A)  

1 
H A=~ ~ J(i,j) li-jl-~dS(i)S(j)+ ~ J(i,j) l i- j l  ~aS(i) cr(j) 

i ,}~A i~A 
j C A  

= H A +  W5 (2.5) 
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where W~ is the interaction between A and its surroundings. If the free 
energy is independent of the boundary conditions a, then certainly 

lira 1 w ,=0 

with probability 1. In fact, we will prove a slightly stronger result; cf. (2.12). 
We start by eliminating the S(i) with i in A, 

V~-~A-~- i~AE { ~r J(i, ~d a(j)} S(i) 

=-- ~ W~ S(i) (2.6) 
i~A 

W~ assumes its maximum (or minimum) if we choose S( i )=  sgn(W~ ~ [or 
-sgn(WT)] .  We therefore estimate 

i~A 

= ~ j( i , j ) l i_j l  ~aa(j) 
i~A 

= 2 [i-j[ 2~a (2.7) 
i~A j 

Here we used the Cauchy-Schwarz inequality and exploited the fact that 
[S(i)[ ~< 1 and the J(i, j) are independent random variables with mean zero 
and variance one. Plainly, if i ranges through A and ~ > 1/2, the last term 
in (2.7) is uniformly bounded by a constant times IA[. In fact, since A ~ 
in the sense of Fisher, this term divided by [A] converges to zero, and thus 

lim 1 A ~ oo I-~ ~ (IWVI} = 0  (2.8) 
i~A 

whenever ~ > 1/2. To see this more clearly, we take the dimension d =  1, 
assume A = [ - [AI  + 1, 0], and consider the interaction between A and the 
right half-line. Instead of (2.7) we then find, taking advantage of the O 
symbol, 

~,o [i--j[-2~ = {O(1i11 
i =  - - IA[  + 1 1 - i =  [AI § 1 

= ~o {O(lil 1/2 =)}=O([A[ 3/2 ~) (2.9) 
i =  - - I A I  + 1 
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If we divide (2.9) by ]AI, we are left with O(IA] 1/2 ~), and (2.8) is 
established. 

To show, however, that IAI -~W~ itself converges to zero with 
probability one, we note that W~ is a sum of independent, though not iden- 
tically distributed, random variables; cf. (2.6) and (2.8). For the sake of 
convenience we again suppose that d-- 1, and put 

wi = [W~I-  (I W~'I ) (2.10) 

We find, as in (2.7) and (2.9), 

~oo i--2<W2>~ ~oo i - 2 < { W : } 2 >  

i=  1 i = - - I  

; 1 

i=1  i = 1  

Moreover, ( w i ) =  0. These two facts enable us to apply a strong law of 
large numbers (m and to conclude that, as A -~ 0% 

1 
I/I ~ w i ~ 0  (2.11) iEA 

with probability one. Writing out (2.11) and using (2.8) we obtain our 
main result, 

IAI 1 ~ IW~[--*0 (2.12) 

with probability one. It trivially follows that IAI 1 W~ --* 0 also. 
For free boundary conditions the existence of the free energy has 

already been established. Using (2.12) and the Bogoliubov-Peierls 
inequality ~12) one now easily verifies that, as A --* o% the free energy exists, 
is a nonrandom number, and is independent of the specific boundary con- 
ditions, whatever the dimension. 

Let us now return to d =  1. The previous estimates enable us to study 
(I W]J ) as A ~ oe, without dividing by IAI. Combining (2.7) and (2.9) we 
see that 

l im sup ( I W . ~ I )  < ~ if c~ > 3/2  (2.13)  
A~c~3 

This result suggests that, given {J}, the interaction energy between A and its 
surroundings is bounded uniformly in A and ~. If true, we could invoke a 
result of Bricmont et al. (2) so as to conclude that the Gibbs state which is 
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obtained in the thermodynamic limit is absolutely continuous with respect 
to the free boundary Gibbs state. Since every equilibrium state may be 
decomposed into ergodic (extremal) components (13~ and two absolutely 
continuous, ergodic, components must be equal, we would have proven the 
uniqueness of the Gibbs state, i.e., the absence of a phase transition. 
Indeed, for e > 3/2 this was done by Khanin, (5/who carefully estimated the 
interaction energy between different parts of the chain. As we have seen (cf. 
the Introduction and Ref. 6) this result is not expected to be optimal. We, 
therefore, need another method. 

3. A B S E N C E  O F  S Y M M E T R Y  B R E A K I N G  

Instead of calculating the interaction energy between two half-lines we 
determine their free-energy difference and show that this quantity is finite. 
More precisely, we divide the line into two half-lines, A~ = ( - o o ,  0] and 
A2= [1, oo), so that Y_=AlwA2, Let #8 or simply # be an equilibrium 
(Gibbs) state. Since we can decompose # into ergodic components, (13) we 
may assume that # itself is ergodic (i.e., extremal Gibbs). We write # = # + 
and associate with #+ a density matrix e x p ( - H + )  where 

H+ = H  1 + H 2 +  W (3.1) 

Wis the interaction energy between A 1 and A2, and H1 and H 2 refer to A 1 
and A2. The Hamiltonians in (3.1) are formal expressions but their mean- 
ing is (or will be) clear from the context. We now flip all the spins in A2 
and obtain a new state #_ with Hamiltonian H_ = H~ + H 2 -  W. Since 
spin flipping is a symmetry transformation, the entropy does not change, 
but the energy does. Hence we find a free-energy difference 

AF=#+(-2W)-S(p+]# ) (3.2) 

which is called the relative entropy (par abus de langage). We will show 
that this quantity is bounded with probability one. If so, kt+ is absolutely 
continuous with respect to # (#+ ~ #_),  i.e., if # _ ( A ) = 0 ,  then 
# + ( A ) = 0 ,  and we can find a density g(co) so that d#+(co) = g(co) dp_(co), 
where g=d#+/d#_ is the Radon-Nikodym derivative. (14~ (See Appen- 
dix A.) For the moment we keep all this on ice and continue the argument. 

If we flip all the spins, we transform # into a spin-flipped state v. Since 
# is ergodic, so is v. However, # may be obtained as the (weak-*) limit of 
states #~ where all spins outside I - N ,  N] have been flipped ( N ~  oo). 
That is, # is a limit of states which are absolutely continuous with respect 
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to v and, hence, so is ~t itself by the uniform estimate we just indicated. 4 
But because/~ and v are ergodic they must be equal. So # equals its spin- 
flipped state and we have g(S(i))=0, whatever i. Note that we did not 
average over the J(i, j). Therefore, the spin-flip symmetry is not broken, the 
Edwards Anderson order parameter vanishes, and a normal phase trans- 
ition is to be excluded. 

We now turn to the proofs. To simplify the notation we assume that 
all the J(i, j) are Gaussian with mean zero and variance one. Gaussians 
have a particularly simple cumulant expansion. One may allow for more 
general distributions by using the methods of I, Eqs. (2.6) and 
(2.13)-(2.18). Moreover, let us define 

P(H) = In tr exp( - H) (3.3) 

where tr (in contrast to Tr) is a normalized trace. Then P(H) vanishes 
when H = 0 .  Finally, let E{.. .} denote an average over the J(i,j) with 
ie  A~ a n d j e  A2, i.e., the random variables which occur in W. If ~b is a non- 
negative function, which may depend on H 1 and H 2, and E{~b} < ~ ,  
uniformly in H l and H 2, then ~b is finite with probability one. This simple 
argument will be used repeatedly. Note that E{.. .} does not refer to the 
random variables J(i, j) in H1 and H2. 

Before turning to our main theorem we prove some preparatory lem- 
mas.  

Lemrna 1. Let 

W= ~ J ( i , j ) l i - j j -~S( i )S ( j )  
i ~A l  
jEA2  

Then E { P(W) } < ~ .  

ProoL By Jensen's inequality 

and ~ > 1 

E{ln tr e x p ( -  W)} <~ In E tr l-[ exp{ -J(i ,  j ) l i - j l  ~ S(i) S(j)} 
iEAI  
j ~ A 2  

= In tr I~ exp { 1/2 l i -  Jl 2~ } < c~ 
i~O 
j > O  

since ~ > 1 and the trace is normalized. | 

4 This estimate involved g+ and , u  and, thus, a translation-invariant (homogeneous) dis- 
tribution (see Appendix B). 



8 van Enter  and van H e m m e n  

k e m m a  2. 
H~ defined on A 1 and H 2 on A2, 

P(W) - P(Hx + H 2 + W) - P(H 1 + H2) ~> 0 

and 

For any Ht and H2, quadratic (even) in the spins, with 

(3.4) 

~-{P(H1 + H2 + W) - P(H1 + H2)} < ~ (3.5) 

Proof. The inequality (3.4) is nothing but F(AI -)- A2) 

F(A1) + F(A2); compare (2.4) and note that Z(HI + H2) = Z(H1) Z(H2). 
The second inequality follows from 

~, Z ( H I + H 2 + W ) )  . ~ Z ( H I + H 2 + W ) ]  

+ H : )  J ( Z ( H ~ + H 2 )  J 

= ln  ~{~tH~+H,(e-W)} =ln#H,+H,(E{e w}) 

= l n e x p { ~  ~, [ i - - j [ - 2 ~ } < ~  (3.6) 
i~<O 
j > O  

as in lemma i. I 

Physically, - P ( W )  is the surface free energy which is obtained by 
coupling the two half-lines A1 and A 2 by W. Combining (3.4) and (3.5) we 
find that this surface free energy is finite with probability one. We now 
want to make contact with the notion of relative entropy. 

I .emma 3. Let {Pi} and {qi} be two sets of positive numbers which 
both sum to one. Then 

S = • p~{ln P i -  In q,} ~> 0 (3.7) 
i 

Proof. By Jensen's inequality 

since xln  x is convex for x/>0. | 

We substitute p~ = exp[- - (H~ + H2 + W)J/Z(H~ + H2 + W) and qi = 
e x p [ - - ( H l + H  2 -  W ) J / Z ( H I + H  2 -  W) into (3.7) and sum instead of i 
over all spin configurations. Since Z(H~ + H2 - W) = Z ( H  1 .4- H 2 + W) we 
then find 

exp[-- ( H  I + S 2 + W)]  
0 ~ < S = ~ - - 2 W  Z(H~+H2+ W) - kt+(-2W) (3.8) 

Com~)aring (3.8) and (3.2) we see that S =  S(/.t+ I/~ ). 
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We rewrite S as a product of two terms, 

2Z(H  1 -4- H2) 
S -  Z(H, + H 2 + W)" #HI + ~i2( - We w) _ (I)" (II) (3.9) 

The second is positive by (3.8), and the first is finite with probability one or 
better. If H1 and H2 are even, this directly follows from the subadditivity of 
the free energy; cf. Eq. (2.4). In that case Z(H1 + H2)/Z(H~ + H2 + W) <~ 1. 
Alternatively we start by applying Jensen's inequality once again, 

Z(H~ + H 2 + W) 
Z(H1 + H2) = #u~ +/h[exp( W)] >~ exp [#m + u=(W)] 

so that 

Z(Hx + H 2 )  

E {Z(H, + H 2 + W)J ~< E{exp[ - # H ,  + H2( m)]  } 

= e x p  {~ ~ ]i-j[-2~#m+H2[S(i) S(j)]2}<oo 
i~<O 
j>O 

as in, Lemma 1. Equation (3.9) exemplifies that there is a close relationship 
between the relative entropy (3.8) and the surface free energy (3.4). We are 
now prepared to prove the absence of symmetry breaking for c~ > 1. 

Theorem.  In the thermodynamic limit, any Gibbs state # of the 
random Ising chain does not break the spin-flip symmetry if c~> 1, i.e., 
I~(S(i)) = 0 for all i. 

Proof. It suffices to show that ~ { # m + H 2 [ -  W e x p ( -  W)]} < oo 
uniformly in H1 and H 2. Then the expression between the curly brackets, 
(II) in (3.9), is finite for almost every random configuration, and the result 
is established. 

By Fubini we may interchange IF{ ..- } and the thermodynamic expec- 
tation with respect to H1 and H 2. So it suffices to study 

•{ -  W e x p ( -  W)} = ~ E t - J ( i , j ) l i - j [ - ~  S(i) S(j) 
i<~O k 

j > 0  

x exp[-  
k~O 
/>0  
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Let us concentrate on a specific pair (i, j): 

E { - J(i,  j ) [ i  - j[ - ~ S( i )  S ( j )  exp [ - J(i,  j ) [ i  - j[ ~ S( i )  S ( j ) ]  } 

{ ]} xE  e x p -  J ( k , l ) l k - l l  = S ( k )  S( l )  (3.11) 
k,1 

where the primed sum does not contain the pair (i, j). The first factor in 
(3.11) is a Gaussian integral of the form 

f + ~  dx  _ ( 1 / 2 ) x  2 - ~  (2~)1/2 e x t  e xt = t 2 e (1/2)t2 

The second is even simpler. Collecting terms we get, for ~ > 1, 

(3.10) exp i ~ l i - j l  < oe (3.12) 

j > 0  j > 0  

as advertized. | 

4.  D I S C U S S I O N  

For a ferromagnetic Ising chain with long-range Interactions of the 
form ] i - j ]  ~ and ~ > 2 there exists no phase transition in the sense that 
there is a unique Gibbs state (2) and the free energy f(/~) is analytic in/3. (151 
As was already, pointed out in the Introduction, there is a phase transition 
for 1 < ~ ~< 2. (1) Heuristically this can be understood by noting that the sur- 
face energy between a left half-line and a right halfqine is finite whenever 

> 2 and infinite for 1 < ~ ~< 2. As we have seen in Section 2, the bond ran- 
domness may effectively decrease the interaction. Here also it seems natural 
to find bounds for the surface energy W, and precisely this was done by 
Khanin. (5) In close analogy to the nonrandom case there is no phase trans- 
ition in the sense that the Gibbs state is unique (5/and f(/~) is infinitely dif- 
ferentiable (C ~ in/~(16) whenever e > 3/2. Our equation (2.13) is consistent 
with this result. We cannot exclude, however, that 

"W[[~ =sup  { ~A J ( i ' j ) [ i - - J [ - ~ '  S ( i ) S ( j ) }  = + ~  (4.1) 
i 1 
j ~ A 2  

for 1 < ~ ~< 3/2. Here the supremum is taken with respect to the spin con- 
figurations in two disjoint, neighboring half-lines A 1 and A 2. If we take 
Gaussian J ( i , j )  and use (2.7) Ewith the inequality sign replaced by 
equality] and (2.9), we find that (4.1) indeed holds for ~<3/2 .  But 
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although for 1 < c~ ~< 3/2 the surface energy diverges, the surface.free energy 
is always finite. We, therefore, have analyzed the latter quantity, in par- 
ticular ftHl+ H 2 [ - 2 W e x p ( - W ) ] ,  so as to prove the absence of symmetry 
breaking. Note, however, that the result directly follows once ]1W]I co < oo 
as in the ferromagnetic case (2~ for c~>2 and in the random case (s) for 

> 3/2. 
If one wants to apply these results directly to real spin glasses, a caveat 

is in order. One has to realize that the spin-glass problem is a random-site, 
not a random-bond problem. (17) Nevertheless we think that it is satisfying 
to have some clear-cut results on a closely related issue, the existence or 
absence of phase transitions in highly frustrated systems with long-range 
interactions. 

Noto added." The arguments of this paper may be extended so as to 
cover the case of the two-dimensional XY model (van Enter and Fr6hlich, 
manuscript in preparation). 

APPENDIX A 

In this Appendix we present an informal discussion of the notion of 
relative entropy. More in particular, we want to indicate why the bounded- 
ness of S(#] v) implies that g is absolutely continuous with respect to v. For 
full mathematical rigor and further references the reader is referred to 
Fr6hlich and Pfister. (Ta) 

If we are given two probability measures # and v on a phase space 12, 
equation (3.7) suggests that S(kt] v) be given by 

O<~ S(ftlv)= f dt~ln -~v 

where d#/dv is a Radon Nikodym derivative. (14) Let us denote by A e the 
complement 1 2 -  A of A. We first want to prove a useful inequality. 

Lemma A. For any measurable A in 12, 

, # ( A ) ,  c 
0 ~< #(A) m ~ +/~(A c) in #(A c) ~< S(/~ ] v) 

v(A c) (A2) 

ProoL 

S(#[v)=IadV--~vln + fAcdV~vln 
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Define normalized measures # ' ( ' ) =  #( ' ) /#(A) and v ' ( ' ) =  v(.)/v(A) for A 
and their analogs #" and v" for A c. Then 

+ ' ,  +,, 
S(# [ v ) = #( A ) f A dv' --~v, m \-~v, ] + #( AC ) I Ac dv" -~w ln \ dv,, j 

I #(A) + #(AC ) In #(AC)] (A3) + #(A) In ~ v ( - -~J  

Since Radon-Nikodym derivatives are positive and x In x is convex for 
x~> 0, the first two terms in (A3) are positive by Jensen's inequality, as in 
Lemma 3 (Section 3), and the inequality (A2) is established. | 

Suppose now that S(#Iv)<<.K< oc and that at the same time we can 
find an A in ~ such that v(A)=O and # ( A ) > 0 .  Then 
#(A) ln[#(A)/v(A)] = +o0 and, by Lemma A, this immediately leads to a 
contradiction. Hence v ( A ) = 0  implies # ( A ) = 0 ,  i.e., # is absolutely con- 
tinuous with respect to v if S(#] v) is finite. 

APPENDIX  B 

It suffices to show that AFi=-f~, taken with respect to a site i, remains 
bounded as i ~ oo (or - o o )  with probability one. In fact, we only need to 
prove this for a subsequence. 

Let D denote the probability space of all bond configurations {J~} 
and let co be an element of (2, i.e., a specific bond configuration. We want 
to show that f~(co)>~ 0 can be bounded by a constant, which may depend 
on co, for some sequence i ~  oo (or - o o ) .  

The f~ are positive, identically distributed but by no means indepen- 
dent random variables, with finite mean ( f t  ) = ( f ) ,  and f i  + 1 (CO) = f t - (Tco)  

where T shifts by one. Let 

1 u (B1)  
FN=~-N Z fi 

t - -  - - N  

By the ergodic theorem, (18) FN(CO)~ F*(co) as N--* oo for almost every co 
and ( F * ) =  ( f ) .  Since F* is positive, F*(co)< oo with probability one. 
Plainly, as N ~ o% we can find a subsequence such that fi(co)<~ F*(co), as 
advertized. 
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